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Abstract. We propose an architecture for a personal health agent (PHA) that
combines machine learning and a Bayesian network (BN) for detecting and diag-
nosing heart disease, specifically arrhythmia. Machine learning (ML) is used for
classifying a patient’s ECG signal. Four ML models, i.e. gradient boosting, ran-
dom forest, multilayer perceptron and support vector machine, are compared and
evaluated using a dataset of 5,340 records containing 12-lead ECG signals cre-
ated from the Chapman-Shaoxing database. Among the four models, the gradient
boosting model produces the best accuracy of 82.88% when classifying an ECG
signal as either atrial fibrillation, other arrhythmia, or no arrhythmia. The detected
pattern is integrated into a BN that captures expert knowledge about the causes of
arrhythmia. The BN structure and parameters are informed by expert knowledge
from the literature and evaluated using Pitchforth and Mengersen’s framework.
The agent uses a decision support module to guide the diagnosis process. It sug-
gests what questions to ask to increase certainty of the presence of arrhythmia,
and it suggests what arrhythmia causes to follow up. This is achieved using sen-
sitivity analysis and diagnostic Bayesian reasoning respectively. The architecture
is evaluated using application use cases.

Keywords: ECG · Arrhythmia · Machine learning · Bayesian networks · Agent
architecture

1 Introduction

With the current surge in popularity of wearable devices such as smart watches and
bands, many people are becoming increasingly motivated to monitor their health digi-
tally [38]. Such devices contain sensors that can monitor physical activity by providing
the heart rate, step count and sleep patterns among others. Some wearable devices, such
as Withings Move and Apple Watch, have the ability to monitor the heart rhythm and to
provide ECG readings [44]. Data collected by such devices should be presented back to
a user in an understandable format that motivates their actions towards improved health
[38].
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This study explores an architecture for an intelligent personal health agent (PHA)
that incorporates both machine learning (ML) and knowledge representation techniques
for pattern detection, situation analysis and decision support. The goal of the agent is to
retrieve data from a wearable device and assist an individual to understand their heart
rhythm. The PHA focuses on electrocardiogram (ECG) readings to determine if arrhyth-
mia is present or not and if present, what its possible causes might be. Arrhythmia is a
cardiac condition characterised by heart rhythm irregularities which, if left unattended,
may lead to stroke [52]. The most common arrhythmia is atrial fibrillation (AF) [26].
The prevalence of AF has increased by 33% in the past two decades, and this prevalence
is expected to increase over the next 30 years. Though this study focuses on arrhythmia,
the PHA can be extended to cover additional health conditions.

In previous work [50], we proposed an initial version of the PHA which combined
ML and a Bayesian network (BN) to interpret and explain the occurrence of AF in
a patient in terms of its risk factors. The architecture consisted of four modules: two
exogenous modules, i.e. the AI service and the Domain Expert, which were external to
the agent, and two endogenous modules, i.e. the Perception and Deliberation modules.
The AI service used an ML model to classify an ECG signal as either P-wave present
or P-wave absent. An absent P-wave is the hallmark characteristic of AF in an ECG
signal. In the deliberation module, a BN was used to represent the causal relations
between different risk factors that influenced the presence of AF. The probabilities of
the ML classification were used as the likelihood values for the evidence captured by
the P-wave node. When the detected ECG feature was entered into the P-wave node,
and the probabilities were propagated, the probabilities of the states of the AF node
changed so that the state that corresponds to the detected ECG feature, “AF present”,
had a higher probability. The PHA then identified the most probable risk factors of the
patient’s condition from the BN.

In this paper, we describe an extension and refinement of the ML module, the BN,
and the overall agent architecture. In the initial PHA, the user would have had to under-
stand how to use BNs in order to interact with the PHA. The architecture now includes a
new decision support module, which allows the agent to offer guidance to the clinician
on what questions to ask the patient or what risk factors to follow up. Using the decision
support module, the clinician can now easily interact with the BN and the agent. The
ML module and the BN previously only detected a single form of arrhythmia, AF, in
the ECG signal. Individuals may have other types of arrhythmias beyond AF. The prob-
lem is now formulated as multiclass classification of the ECG signal to detect either
AF, other arrhythmia, or no arrhythmia (none). The inclusion of the third class (other
arrhythmia) increases the generalisability and usability of the ML model, allowing it
to detect the presence of not only AF but also other types of arrhythmia and under-
stand its causes. Additionally, we evaluated our architecture on a new dataset. In the
original study, a combination of the MIT-BIH Arrhythmia and MIT-BIH AF databases
were used to train the ML model. The dataset only represented two rhythm types (AF
or none) with 24 ECG records. In this study we use the Chapman-Shaoxing database
which contains 5,340 ECG records and 11 types of rhythms.

The deliberation module, which involves obtaining the most probable risk factors
of an individual’s condition, is carried out using the BN. The scope of the BN has
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accordingly been extended to cater for three possibilities: AF, other arrhythmia or no
arrhythmia. A node (i.e. ML Prediction: Arrhythmia) is introduced to form
the interface between the ML and the BN. The conditional probability tables (CPTs) of
this node are populated using recall values of the applied ML algorithm which is the
algorithm with the best accuracy (gradient boosting in this work). In addition, we factor
the effect of COVID-19 on cardiac arrhythmia into the design of our BN.

The contribution of this paper is threefold: firstly, an improved PHA agent architec-
ture with comprehensive internal (endogenous) modules including an explicit decision
support module; secondly, a multi-class ML model which identifies whether a patient
has AF, some other type of arrhythmia, or none, based on an ECG input; and thirdly, an
improved prototype arrhythmia BN for interpretation and explanation of the ECG result
of a particular patient in terms of arrhythmia risk factors.

The rest of the paper is organised as follows: Sect. 2 discusses related work.
Section 3 presents an improved version of the PHA architecture, discussing the essence
and relevance of each of the modules. In Sect. 4, details about the dataset used, the
model building and the results of the ML experiments are presented. Section 5 dis-
cusses in detail how the arrhythmia BN was built and validated. In Sect. 6, we describe
the decision support module, and evaluate the PHA with use cases. A detailed discus-
sion is presented in Sect. 7 and we conclude and provide the limitations and future work
in Sect. 8.

2 Related Work

2.1 Electrocardiogram Classification

The electrocardiogram (ECG) remains the gold standard in arrhythmia detection [16]. A
typical ECG signal consists of P, T and U waves, as well as the QRS complex [51]. ECG
is measured using electrodes placed on the skin. A particular arrangement of electrodes
gives rise to a lead, with the simplest lead being a pair of electrodes [14]. The most
commonly used lead system is the 12-lead ECG. It is derived from 10 electrodes placed
on the legs, arms and chest that form 12 leads, namely Leads I, II, III, aVR, aVL, aVF,
V1, V2, V3, V4, V5 and V6 [23]. The first six leads are referred to as limb leads, and
are derived from electrodes placed on the arms and legs. The latter six leads are referred
to as precordial leads and are derived from electrodes placed on the chest [23].

The 12-lead ECG is considered the benchmark because it captures a more complete
picture of the heart compared to reduced lead systems. Each lead provides a different
angle of the electrical activity in the heart; therefore, with a 12-lead ECG, the same
electrical event can be viewed from 12 different angles [20]. Wearable devices for mea-
suring ECG often rely on fewer electrodes and, subsequently, fewer leads. Although
more leads currently result in better arrhythmia detection [44], reduced-lead ECGs gen-
erated from wearable devices are starting to be viable for detecting arrhythmia and are
increasingly showing comparable performance to standard 12-lead ECGs [18,42].

2.2 ECG Classification Using Machine Learning

The classification of ECG data is part of the situation detection module in the PHA.
A situation refers to “an external semantic interpretation of sensor data” [54] in an
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application domain. Example situations from an ECG pattern would be “AF” or “other
arrhythmia”. Situations are used in the context of the state of monitored features
in a physical environment [1]. Situation detection techniques can be categorised as
either specification-based or learning-based [54]. Specification-based techniques such
as ontologies and evidence theory rely on expert knowledge to model situations and
then reason on them with input sensor data. On the other hand, learning-based tech-
niques such as ML uncover patterns or correlations in the data.

ML for arrhythmia classification from ECG signals has gained traction in recent
years. Traditional ML algorithms such as tree-based methods and linear models have
been widely used and shown to produce good results in ECG analysis, while being sim-
ple and computationally inexpensive to train [36]. Popular ML algorithms used in ECG
classification include support vector machine (SVM) and ensemble decision trees using
techniques such as bagging (e.g. random forest) and boosting (e.g. gradient boosting
and adaptive boosting).

2.3 Bayesian Networks

Many systems developed for ECG analysis apply ML techniques [2,27]. These systems
have a number of limitations. They are not able to deal efficiently with uncertainty;
they are considered black boxes and are hard for domain experts to understand; and
they demand large datasets [11]. Also, while these techniques have registered great
success in heartbeat recognition, beat segmentation and ECG classification, they have
had little success in decision support. BNs have the ability to deal with the uncertainty
that is embedded in reasoning in cardiology as well as medical reasoning at large; they
are understandable to non-technical users [5] and play a large role in decision support.
They have been proposed to support the screening, diagnosis, selection of treatment,
prognosis and multimorbidity modelling of different medical conditions e.g. cancer and
heart disease [11,21].

BNs describe causal relationships between variables using directed acyclic graphs
(DAGs). The variables are represented by nodes. For discrete BNs, each node or
variable has a number of exhaustive and non-overlapping states [21]. The interaction
between the nodes is specified using conditional probability tables (CPTs) in each node
[21], which gives the probability of a certain state occurring, given the state of a parent
node. The structure of the BN can be developed by hand or from data. The parameters
in the CPTs can be generated from domain experts, data and/or literature [21,40,47],
making BNs a flexible modelling tool [15]. The CPT values of input nodes (i.e. those
without parents) are usually obtained from a distribution of how the states naturally
occur [21]. On compiling the BN, if the user is certain of some information, this infor-
mation is entered into the BN as evidence [21], and the probability of that state becomes
100%. As a result, the probabilities of each of the nodes in the network are updated
using Bayes’ rule (Eq. 1 in the Appendix).

Validation of BNs. The structure of a BN is usually validated by experts. The param-
eters of the BN can be validated by data, if it is available [21]. If not, the frame-
work proposed by Pitchforth and Mengersen [40] can be used to evaluate an expert-
elicited BN. This framework addresses seven different types of validity: nomological-,
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face-, content-, concurrent-, convergent-, discriminant- and predictive validity. One of
the tests for assessing predictive validity is sensitivity analysis. This measures how sen-
sitive the network is to changes in input (evidence) and parameter (CPT) values [21].
Measures for analysing sensitivity to evidence, like entropy and mutual information
(MI), can be used to determine the degree to which adding evidence about one variable
will reduce the uncertainty in our belief of the value of a target variable [21]. Entropy
tells us the current uncertainty we have in our belief of the value of some target variable,
while MI gives us an indication of the degree to which we can reduce this uncertainty
by adding evidence at another variable (see Eqs. 2 and 3 in the Appendix). To gain
the largest reduction in uncertainty in the target variable, we should add evidence to
the variable with the highest MI value. Thus the MI values can be used to determine
a priority ranking in terms of which evidence to gather next. Using this ranking, the
PHA can determine which questions should be asked to increase certainty in the target
variable.

BNs in Cardiology. BNs were explored as a tool for premature ventricular contraction
beat classification based on the ECG features of the sinus rhythm and the shape of the
beat waveform [9–11]. Domain knowledge on risk factors that have causal influence on
the arrhythmia are not incorporated in the BN.

BNs have been used by a number of authors to model the risk of coronary heart
disease (CHD), e.g. [13,15,35,37], cited in Korb & Nicholson [21]. These BNs model
the factors that lead to CHD, such as age [13,35,37], sex [13,35], smoking [13,15,35,
37], obesity [13,15,37], alcohol [15], diabetes [37] and hypertension [13,15,37]. The
structures of these BNs varied; some BNs modelled some risk factors as influencing
others, while some BNs modelled the risk factors as being independent of each other.
Only one of these BNs included a node for an ECG and for rapid heartbeats, which are
child nodes of the heart disease node [15]. To our knowledge, no BNs in the literature
focus on arrhythmia.

2.4 Agent Architecture

The knowledge discovery and evolution (KDE) agent architecture [48] was developed
recently for agents that analyse patterns from sensor data in physical systems, and
detect, interpret and explain patterns found in this data. The architecture combines
“bottom-up” ML techniques for pattern detection with “top-down” knowledge repre-
sentation and reasoning (KRR) techniques such as BNs for interpreting and explaining
these patterns [48,49]. Although these techniques are rarely combined in agents, there
is now a convergence on the fact that purely data driven or knowledge driven systems
alone are not sufficient for AI systems and that these systems could benefit from incor-
porating both techniques [17]. Such systems are known as hybrid systems. In this work,
we leverage the strengths of both techniques for the different tasks of the PHA.

3 PHA Architecture

The architecture for the PHA is shown in Fig. 1. The architecture design draws from the
KDE architecture [48]. It consists of four modules: the pattern detection module, per-
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ception module, deliberation module and the decision support module, that contribute
to the various steps of the agent’s overall operation. Each module is discussed in the
following subsections.

Fig. 1. Agent architecture for a personal health agent (PHA).

The clinician is the domain expert, who plays a key role in different model devel-
opment activities. These activities are represented by the green dashed arrows. The
clinician 1) curates the ECG dataset with labels to train and update the ML model; 2)
develops the structure and conditional probability tables of the BN, including how it
integrates with the ML model; and 3) continuously updates and refines the models as
s/he gains new knowledge. For example, s/he may add new data and retrain the ML
model and/or revise the BN.

3.1 Pattern Detection

The first step of the PHA’s operational loop is pattern detection. The incoming ECG
signal from a wearable device is passed to the pattern detection module (arrow 1). The
module uses a pre-trained ML model to classify the ECG signal. The ML model is
trained prior to the agent’s execution. Details are discussed in Sect. 4. The clinician is
responsible for the curation of the ECG dataset.
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3.2 Perception

The perception module provides a bridge between the pattern detection module and the
deliberation module. It consists of a situation detection module which uses rules, of the
form if <pattern> then <situation>, to map patterns detected from the ML model
to situations in the BN. For the current version of the PHA agent, the patterns (AF, other
arrhythmia and none) can be added directly to the BN as evidence, so these rules are
not used.

3.3 Deliberation

The deliberation module focuses on how the PHA arrives at its suggestion for following
up a given situation. The main component of the deliberation module is the BN. BNs
have been used in other agent architectures in their deliberation processes, e.g. [12,41].
The PHA agent has knowledge that is captured using the BN presented in detail in
Sect. 5. The objective of the PHA is to suggest the best way to follow up the observed
situation; it does not provide treatment options. For instance, the PHA suggests what
further information to find about an individual’s lifestyle or what risk factors to check
for. On this note, the cost of having false positives is much lower that the cost of having
false negatives. The information encoded in the BN can be drawn from expert knowl-
edge or from literature; it can also be designed from data.

Using the BN, prior to deliberation, situation analysis is conducted. The situation
obtained in the perception module is mapped onto a corresponding state in the observ-
able node (i.e. ML Prediction: Arrhythmia) in the BN by entering the match-
ing state as evidence. The agent then determines whether a given situation should be
followed up or not. A situation where AF or other arrhythmia is suspected to be present
needs to be followed up. A normal ECG which indicates that no arrhythmia is present
requires no further attention.

In the deliberation module, the agent considers specific evidence of the example
form ML Prediction: Arrhythmia == Atrial fibrillation. The selected state corresponds
to the situation detected during perception. During deliberation, the agent requires con-
text. The agent starts by incorporating context that consists of information about the
demographic risk factors, specifically age and sex. The lifestyle risk factors (alcohol
abuse, smoking and obesity) also form part of the context, if information about them
is available. After all evidence and context has been added to the BN, the belief val-
ues of all the disease risk factors (e.g. hypertension) that have causal influence on the
arrhythmia node are extracted.

3.4 Decision Support

The decision support module provides an interactive tool which serves as the key inter-
face between the agent and the clinician. The tool allows the clinician to add information
about a patient iteratively and to determine the effect of this information on the presence
of arrhythmia in the patient. Based on sensitivity analysis of the BN, the agent informs
the clinician on the most important information that is required to reduce the uncertainty
of the patient having arrhythmia. As more information about the patient is provided, the
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agent obtains a clearer picture of the patient’s situation and is able to determine the risk
the patient having arrhythmia or not. In addition, the agent also displays the likelihood
of other disease risk factors that the clinician may need to follow up.

4 Machine Learning for Arrhythmia Detection

In this section, we present details about the model building phase of the pattern detec-
tion module, which was conducted prior to the agent execution. In this phase, we use a
dataset of 5,340 records containing 12-lead ECG signals to train ML models. The full
source code for the data preprocessing, hyperparameter tuning and model building is
publicly available on GitHub1.

4.1 Dataset

The Chapman-Shaoxing database [55], a large publicly available ECG database, was
used to create the dataset. The database was developed as a result of a collaboration
between Chapman University, California and Shaoxing Hospital Zhejiang University
School of Medicine, China. It contains 10,646 12-lead ECG records, each from a unique
patient, with a duration of 10 s and a frequency 500 Hz. The database contains 11
rhythm categories, with each record belonging to only one: sinus bradycardia, sinus
rhythm, atrial fibrillation, sinus tachycardia, atrial flutter, sinus irregularity, supraven-
tricular tachycardia, atrial tachycardia, atrioventricular node reentrant tachycardia, atri-
oventricular reentrant tachycardia, and sinus atrium to atrial wandering rhythm. The
sinus rhythm category denotes a normal rhythm with no arrhythmia, while the sinus
irregularity category denotes an unspecified irregular rhythm.

Each signal in the database was filtered using a bandpass Butterworth filter to
remove noise. Two demographic features, age and sex, were obtained for each record.
Additionally, we computed statistical features from the ECG signals, as proposed in the
Physionet/Computing in Cardiology 2020 and 2021 challenges [3,43]. Seven statistical
features, i.e. mean, median, standard deviation, variance, skewness, and kurtosis, were
calculated for both the R-R intervals and the R-peak values for each of the 12 leads,
resulting in 144 statistical features. The R-R intervals and R-peak values were com-
puted using Sznajder and Łukowska’s QRS detector [46] based on the Pan-Tomkins
algorithm. The root mean square for each lead was also calculated, resulting in another
12 features. Together with age and sex, this resulted in a total of 158 features. The sta-
tistical features were then normalised using Scikit-learn’s StandardScaler, which
removes the mean and scales the data to unit variance. The mathematical formula for
this is z = (x−u)

s , where z is the standard score of a sample x, u is the mean of the
samples, and s is the standard deviation of the samples.

There were 1,780 AF records in the database. To ensure a balanced dataset, 1,780
records from each of the other two classes were randomly selected. To determine the
effect of the number of classes on the ML model performance, we used a subset of the
dataset with two classes, AF and None. Table 1 shows the details of the multiclass and
binary datasets, including summary statistics for age and sex. The impact of the number
of classes is discussed in Sect. 4.3.

1https://github.com/mbithenzomo/personal-health-agent-ml.

https://github.com/mbithenzomo/personal-health-agent-ml
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Table 1. Dataset details.

Dataset Classes Records
per class

Total
records

Sex ratio Age
range

Age percentiles
(25th, 50th, 75th)

Multiclass AF 1780 5340 M: 2,842
F: 2,498

Min: 4
Max: 98

51, 64, 75

Other 1780

None 1780

Binary AF 1780 3560 M: 1,826
F: 1,734

Min: 5
Max: 98

53, 67, 77

None 1780

4.2 Model Development

Four ML classification algorithms were implemented using Scikit-learn [39]: support
vector machine (SVM), random forest, gradient boosted decision trees, and multilayer
perceptron (MLP). The first three were selected due to their wide use in the litera-
ture for ECG classification, while the MLP was selected as it was the best performing
model in our previous work. Hyperparameter tuning for the four algorithms was done
using Scikit-learn’s GridSearchCV, which performs an exhaustive search over spec-
ified parameter values and returns the best combination of parameters. The options and
selected hyperparameters for each algorithm are shown in the Appendix.

As we did in our previous study [50], we used 10-fold cross-validation to evalu-
ate the performance of the models. Cross-validation has been shown to be effective in
accurately assessing the generalisation performance of ML models [19]. A stratified
approach was chosen to maintain the distribution of each class in each fold.

4.3 Model Evaluation and Selection

The ML models were evaluated using several metrics, averaged across the test folds
during the cross-validation process: overall accuracy, overall confusion matrix, and the
precision, recall, and F1-score for each class. Accuracy refers to the percentage of cor-
rect predictions for the test data, and is obtained by dividing the number of correct
classifications by the total number of both correct and incorrect classifications. The
confusion matrix shows the number of correctly classified examples and incorrectly
classified examples, with the number of correctly classified examples forming the main
diagonal of the matrix.

The precision for a particular class is calculated by dividing the number of correctly
classified examples for that class by the total number of examples that were classified as
belonging to that class, whether correctly or incorrectly. On the other hand, the recall for
a particular class is the number of correctly classified examples for that class, divided
by the actual number of examples for that class. The F1 score is a computation of the
harmonic mean of the precision and recall. The formulae for these metrics are shown in
the Appendix.

Including the demographic features generally resulted in an increase in accuracy
for all the models. The impact of data normalisation was most significant in the SVM
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and MLP models, which performed much better with normalised data. In contrast, the
gradient boosting and random forest models were not significantly affected by normal-
isation. With regards to the number of output classes, the binary classification accuracy
was significantly better than the multiclass accuracy. This can be attributed to the fact
that many arrhythmias have similar irregularities in the ECG, such as in the R-R interval
[7].

Table 2 and Table 3 show the classification results for the multiclass and binary
datasets respectively, including the precision, recall and F1-score by class as well as
the overall average confusion matrices and accuracy scores. Overall, the best perform-
ing model was the gradient boosting model, which achieved an average accuracy of
82.88% for the multiclass dataset and 93.85% for the binary dataset. The 93.85% accu-
racy achieved for the binary classification is an improvement on the performance of
the best performing model in our previous work, which was an MLP that achieved an
accuracy of 89.61%.

Table 2. Multiclass classification results (AF, Other and None).

Algorithm Classes Precision Recall F1-Score Confusion Matrix Accuracy

Gradient
Boosting

AF 86.24% 89.10% 87.65%
⎛
⎝
1586 113 81
146 1364 270
107 197 1476

⎞
⎠ 82.88%Other 81.48% 76.63% 78.98%

None 80.79% 82.92% 81.84%

Random
Forest

AF 80.76% 87.02% 83.78%
⎛
⎝
1549 141 90
192 1228 360
177 170 1433

⎞
⎠ 78.84 %Other 79.79% 68.99% 74.00%

None 76.10% 80.51% 78.24 %

MLP
AF 77.04% 79.38% 78.20%

⎛
⎝
1413 198 169
218 1255 307
203 297 1280

⎞
⎠ 73.93%Other 71.71% 70.51% 71.10%

None 72.89% 71.91% 72.40%

SVM
AF 73.82% 81.74% 77.58%

⎛
⎝
1455 181 144
312 1075 393
204 279 1297

⎞
⎠ 71.67%Other 70.03% 60.39% 64.86%

None 70.72% 72.87% 71.78%

Table 3. Binary classification results (AF and None).

Algorithm Classes Precision Recall F1-Score Confusion Matrix Accuracy
Gradient
Boosting

AF 92.77% 95.11% 93.93%
(
1693 87
132 1648

)
93.85%

None 94.99% 92.58% 93.77%
Random
Forest

AF 88.88% 92.53% 90.67%
(
1647 133
206 1574

)
90.48%

None 92.21% 88.43% 90.28%

MLP
AF 88.10% 87.75% 87.93%

(
1562 218
211 1569

)
87.95%

None 87.80% 88.15% 87.97%

SVM
AF 86.09% 89.04% 87.54%

(
1585 195
256 1524

)
87.33%

None 88.66% 85.62% 87.11%

5 Arrhythmia Bayesian Network

In this section, we describe the development and validation of the BN used in the delib-
eration module.
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5.1 Developing the Bayesian Network

We designed a prototype arrhythmia BN using the Netica GUI2. The arrhythmia BN
prototype is illustrated in Fig. 2. The aim of the BN is to show factors which could
have causal influence on arrhythmia. The structure of the BN was informed by medi-
cal idioms for BNs [24]: nodes with prefix “RF” denote risk factors, and the condition
(Arrhythmia) is denoted with prefix “C”. Other medical idioms [24,33] used in devel-
oping the BN were the definitional/synthesis idiom (Lifestyle risk factors
summarises the alcohol abuse, smoking and obesity risk factors); and the cause-
consequence idiom (Age and Lifestyle risk factors cause the four tradi-
tional risk factors of hypertension, ischemic and valvular heart disease and diabetes).
CPT values for the nodes were based on literature, including our previous work [50].
Using literature means that models can be created when domain experts are not avail-
able [21]. This knowledge has the advantage of having been peer reviewed, compared
to eliciting the knowledge directly from domain experts [21].

Fig. 2. A prototype BN for explaining the causes of arrhythmia with no evidence added.

There are three lifestyle risk factors in the BN: alcohol abuse, smoking and obesity.
Other traditional risk factors are hypertension, ischemic heart disease, valvular heart
disease, diabetes mellitus and whether the person had contracted COVID-19 or not.
COVID-19 was added to the AF BN [50], since patients who have had COVID-19
developed different types of arrhythmia [29], the most common being AF [8]. Age and
sex are demographic factors. Prior probabilities of the age node were obtained from
global population percentages [4].

The ML model is applied in the BN in the following way: the chosen ML algo-
rithm is the one with the best accuracy, i.e. gradient boosting (see Table 3). Of special
interest is the ML Prediction: Arrhythmia node, which is the node in which
the ML prediction is entered as evidence. The CPT values of the ML Prediction:
Arrhythmia node contain recall values based on the confusion matrix given in
Table 2 for gradient boosting as shown in the example instance below.

2https://www.norsys.com/download.html.

https://www.norsys.com/download.html
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P(ML Prediction: Arrhythmia == Atrial fibrillation |
C:Arrhythmia == Atrial fibrillation) = recall (Atrial
fibrillation)

These represent the proportion of correctly vs incorrectly classified samples iden-
tified by the ML model. These CPT values are defined as the probability of the ML
algorithm detecting a given state given that it is indeed the patient’s condition. The
CPT of the ML Prediction: Arrhythmia is shown in Fig. 3. Based on the out-
put of the situation detection module, evidence is entered into one of the states of the
ML Prediction: Arrhythmia node, depending on whether the ML algorithm
identified AF, other arrhythmia or none.

Fig. 3. The CPT for the ML Prediction: Arrhythmia node.

The BN reasons diagnostically (against the flow of the arrows) to infer the most
likely risk factors of the patient, given the evidence in the ML Prediction:
Arrhythmia node. These give explanations of the occurrence of arrhythmia in the
patient in terms of the risk factors. If more information is known about the patient,
such as their demographic or lifestyle factors, these can also be entered into the BN as
evidence.

5.2 Validating the Bayesian Network

Pitchforth and Mengerson’s criteria for evaluating expert-elicited BNs [40] were used
by the authors to evaluate the BN. The BN falls within the cardiology domain, with
an emphasis on arrhythmia. This confirms nomological validity. The structure, node
discretisation and parameters in the BN are what would be expected. This confirms
face validity.

In the prototype arrhythmia BN, the main risk factors for AF match those mentioned
in the literature (e.g. [6,25,34,53]). The risk factors for arrhythmia are similar to those
of AF [28,45], and the most prevalent arrhythmia risk factors found in the literature are
modelled in the BN. The states of the nodes cover the range of values for each node,
with no gaps. The CPTs of input nodes are based on prevalence values from literature.
These evaluations confirm content validity. However, it should be noted that in certain
populations, some risk factors are more prevalent than others. This would also affect
the CPT values of the BN.

Concurrent validity is determined by comparing how the BN and other theoreti-
cally similar BNs act. Apart from the AF BN [50], we do not have access to other
working BNs in the cardiology domain. The nodes and discretisation of the prototype
arrhythmia BN are the same as those of the AF BN, apart from the C: Arrhythmia,
COVID-19, ML Prediction: Arrhythmia nodes which are new. In addition,
the discretisation of the Age node changed from four states to five states: an additional
state was added for ages of under 20, since it is possible to experience other types of
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arrythmia during these ages. The CPTs of the arrhythmia BN are the same as the AF
BN, apart from those of the Age nodes and the four traditional risk factors. Both net-
works show a similar prior distribution (see Fig. 2). The probability in the AF state
increases in both BNs when evidence for the disease risk factors is added, which is as
expected. The arrhythmia BN also follows the medical idioms of Kyrimi et al. [24], as
outlined in Sect. 5.1.

By comparing the BN to others in the literature, convergent validity could be estab-
lished. Apart from the AF BN [50], no BNs explaining the causes of arrhythmia were
found. The structure of the arrhythmia BN mirrors sub-networks of other cardiology-
related BNs, with minor exceptions. For example, in the Busselton BN which modelled
the risk of CHD, risk factors such as being overweight, drinking alcohol, smoking,
diabetes, age and sex were identified [35]. In this BN, all factors led to the node which
predicted a risk of a CHD event in the following 10 years. In another CHD BN [37], age,
smoking and obesity led to diabetes, which is similar to the arrhythmia BN. In Ghosh
and Valtorta [15], obesity, smoking and alcohol leads to hypertension, and heart disease
leads to rapid heartbeats; however, they model hypertension as leading to heart disease,
whereas in our BN, these are modelled as two independent risk factors for arrhythmia.
A BN modelling cardiovascular risk [13] also identified the factors of weight, smoking,
sex and age. Weight could influence hypertension, as in our BN. In their BN though,
sex influenced age, and age influenced the smoking habits and weight of the patient. It
should be noted, however, that the structure of this cardiovascular risk BN was gener-
ated by averaging the structures of 500 different networks whose structure was learned
from data. The face validity of the arrhythmia BN was judged to be fair.

Predictive validity is evaluated by assessing the behaviour of the BN when it is exe-
cuted, the sensitivity of the BN to findings or to parameters, and how the BN behaves for
extreme conditions. Evidence was entered into the C: Arrhythmia node’s “Atrial
fibrillation” state, modelling that a person has AF (see Fig. 4). The inferred values of

Table 4. Comparison of the four traditional risk factor values, given AF, to Nguyen et al. [34].

Node BN value
(Fig. 4)

Min prevalence
value in [34]

Max prevalence
value in [34]

RF: Hypertension 32.8% 10.3% 71.9%

RF: Ischemic heart disease 16.9% 6.4% 47%

RF: Valvular heart disease 6.02% 5.6% 66%

RF: Diabetes mellitus 11.8% 3.3% 33%

Fig. 4. Extract of the prototype BN showing arrhythmia risk factors, given that AF is present.
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these four nodes fall within the ranges outlined in Nguyen et al.’s systematic literature
review of the prevalence of AF [34] in developing contexts (see Table 4).

Extreme conditions such as the sex and age of the person were used to evaluate
the BN. The BN’s results for AF matches the statement of Naccarelli et al. [32] that
AF increases with age, and that more men have AF than women, at any age. Adding
evidence for lifestyle factors to the BN increased the probability of AF and of other
arrhythmia.

The sensitivity of the BN to findings was examined (see Table 5). This table
shows what evidence should be sought to increase certainty about the values of the
C: Arrhythmia node. Whether the patient has had COVID or not gives the most
added certainty, followed by hypertension, the patient’s sex, ischemic heart disease, the
patient’s age, valvular heart disease, diabetes and other lifestyle risk factors.

This ranking reflects the main modifiable risk factors of the most prevalent arrhyth-
mia, AF [22,34]. However, the risk factors may have a larger or smaller effect on
arrhythmia, depending on the population being modelled.

Based on the validation, the BN suitably represents factors causing arrhythmia.
However, this prototype BN should be tested and evaluated further before it is deployed
for real world use.

Table 5. Sensitivity of C: Arrhythmia to findings at other nodes.

Node Mutual Information Percent Variance of Beliefs

C: Arrhythmia 1.11949 100 0.2590261

ML Prediction: Arrhythmia 0.54069 48.3 0.1175418

RF: COVID-19 0.04423 3.95 0.0098642

RF: Hypertension 0.02255 2.01 0.0049399

Sex 0.02009 1.79 0.0045437

RF: Ischemic heart disease 0.01959 1.75 0.0040420

Age 0.01798 1.61 0.0039373

RF: Valvular Heart Disease 0.01517 1.35 0.0025202

RF: Diabetes mellitus 0.00525 0.469 0.0011528

Lifestyle risk factors 0.00029 0.0258 0.0000659

RF: Smoking 0.00006 0.00552 0.0000141

RF: Obesity 0.00004 0.00368 0.0000094

RF: Alcohol Abuse 0.00001 0.000544 0.0000014

6 Evaluation of the PHA

6.1 Decision Support Module

The Decision Support module provides the key interface between the clinician and the
agent. The agent is able to provide two types of decision support, i.e. predictive support
and diagnostic support.
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Predictive Support. The agent assists the clinician to find out the most relevant infor-
mation that might increase certainty about the presence of arrhythmia in a patient. This
is achieved using the sensitivity analysis shown in Table 5. For example, assuming that
the ML prediction is already provided: the next most important information is whether
the patient has had COVID, and then whether there is hypertension present. At each
stage of the process, the system recommends the best questions to ask based on the
previous answers given and it updates its conclusions. A screenshot of the dashboard
obtained using AutoNetica3 is shown in Fig. 5. It provides an ordered set of the most
important questions, based on the MI scores, that would increase the certainty in the
C: Arrhythmia node. In this way the clinician is guided through a set of questions.
As the answers are provided, the posterior probabilities (at the bottom of the screen) of
the different arrhythmia states are updated.

Fig. 5. A display of the of the most relevant questions to ask (using Autonetica).

Diagnostic Support. The agent also provides a diagnostic support interface to the
clinician. Assuming that the clinician believes that a patient has Arrhythmia, then the
agent is able to advise the clinician of the most likely underlying diseases that may
have caused the arrhythmia in this patient. The diagnostic support interface is shown
in Fig. 6. The clinician supplies demographic information and lifestyle risk factors for
the patient, if this is available. Based on the supplied information, the PHA displays
the probabilities of the patient having traditional risk factors that should be followed up
(see bottom of Fig. 6). At the top of this interface is a link to the predictive decision
support described above. The interface is implemented in NeticaJ4, the Java version of
the Netica API.

6.2 PHA Evaluation

To evaluate the PHA, we apply case-based evaluation [21] on a set of application use
cases. Cases are generated to test different situations i.e., a situation where atrial fib-

3https://www.norsys.com/WebHelp/NETICA/X_AutoNetica.htm.
4https://www.norsys.com/netica-j.html#download.

https://www.norsys.com/WebHelp/NETICA/X_AutoNetica.htm
https://www.norsys.com/netica-j.html#download


400 T. Wanyana et al.

Fig. 6. A display of the traditional risk factors and their probabilities for hypothetical patient
“John Kintu”: an 85 year old male who is obese, smokes, abuses alcohol and has an ECG which
shows the presence of AF.

rillation is present and a situation where some other arrhythmia is present. The context
variables are changed to extreme values in the different cases to ensure reasonable net-
work performance across a variety of possible cases. For example, the extreme upper
case would be an obese male individual above 80 years who smokes and abuses alcohol.

The first use case is for the hypothetical patient, “John Kintu”, an 85 year old male
who is obese, smokes, abuses alcohol and has presented with an ECG that shows the
presence of AF. Figure 7 shows the BN with the same information about the hypothet-
ical patient, “John Kintu” as shown in Fig. 6 entered as evidence. The agent suggests
that for John’s demographic factors and his lifestyle risk factors (obesity, smoking and
alcohol abuse), he would have 78.8% chance of having hypertension and 68% chance

Fig. 7. BN for hypothetical patient “John Kintu” with evidence entered, generated in Java using
NeticaJ.
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of ischemic heart disease. He would therefore have to confirm using medical tests if
these conditions are indeed present and manage them.

For the second use case, let us consider another hypothetical individual who is a
25 year old female with two lifestyle risk factors, alcohol abuse and smoking. Assum-
ing that from her ECG, the predicted situation is “other arrhythmia”, this is captured as
evidence in the ML prediction: Arrhythmia node. The patient’s age and sex
as well as lifestyle risk factors are also captured. As shown in Fig. 8, the chances that
indeed, the patient has “other arrhythmia” is 33.7%. This patient has a 16.4% prob-
ability of having hypertension and 12% probability of having ischemic heart disease.
The low probabilities of the traditional risk factors can be attributed to the fact that the
patient is young.

Fig. 8. The BN with evidence for a hypothetical 25 year old female with two lifestyle risk factors:
alcohol abuse and smoking. The situation detected is that she has “other arrhythmia”.

It is important to note that the agent does not suggest with full certainty that some-
one has AF, other arrhythmia or none. The moment the agent predicts that the patient
has AF or other arrhythmia, the clinician should consider confirming the condition using
a medical test.

7 Discussion and Conclusions

In this paper, we have described an architecture for a personal health agent (PHA)
to support situation detection, situation analysis and decision support for diagnosing
arrhythmia. The PHA is based on an agent architecture that incorporates an ML model
for detecting irregular patterns and situations in a patient’s ECG signal, a BN for cap-
turing expert knowledge about the causes of arrhythmia, and a decision support module
which guides the diagnosis process. The architecture combines an ML model, a BN
and a decision support module to detect the presence of arrhythmia in a patient and to
determine its likely causes. The ML model takes in an ECG signal and detects whether
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arrhythmia is present in the patient. The BN, which captures expert knowledge from
the literature contains an ML prediction node. This is used to integrate the ML model
predictions into the inference process. Once evidence is entered in the ML prediction
node, together with the demographic, lifestyle and disease risk factors of the patient, the
probability of the patient having arrhythmia is determined using Bayesian inferencing.

We introduced a decision support module that provides specific support for clini-
cal decision making. The module supports both predictive and diagnostic reasoning. It
uses sensitivity analysis and predictive reasoning to identify the most relevant questions
for the clinician to ask the patient to determine whether arrhythmia is present or not.
It uses diagnostic reasoning to determine the possible causes of a patient’s arrhythmia
given the information that is currently available for the patient. The decision support
module provides interactive user interfaces which guides the clinician through the diag-
nosis process without requiring knowledge about using and interpreting BNs. This is
an improvement on the previous PHA architecture [50] which did not have a decision
support module.

The other key extension was the augmentation of the agent to cater for other arrhyth-
mia conditions besides AF. In our previous study [50], the focus was on distinguishing
between AF and normal rhythms from an ECG signal. This was done by training an
ML model to classify an ECG pattern based on the absence of a P-wave. The best per-
forming model was an MLP which achieved an accuracy of 89.61% on a combination
of the MIT-BIH Arrhythmia and MIT-BIH AF databases. In this study, we include a
third class for other types of arrhythmia and use a different dataset. The best perform-
ing model is now a gradient boosting classifier, which achieves an accuracy of 82.88%
when distinguishing between the three classes on the Chapman-Shaoxing database. The
drop in accuracy is not surprising given the similarities in certain ECG characteristics in
different arrhythmias, such as the R-R interval [7]. When evaluating the gradient boost-
ing classifier on the binary problem (AF or normal) the model achieves an accuracy of
93.85%, which is an improvement on our previous work.

Like the ML model, the BN was extended to accommodate AF, other arrhythmia
and none. In our previous BN, the Age node only catered for patients 20 years old and
over. AF is typically not experienced in younger people, but other types of arrhythmia
can be. An additional state in the Age node was added to cater for under 20 year olds.
As a result, the CPT values of the traditional risk factors were updated. In the current
BN and PHA, there is a stronger interface between the ML model and the BN since
we added a node (the ML Prediction: Arrhythmia node) for which the CPT is
obtained from the recall values of the ML classifier. This allows the BN to account for
the false positives of the ML classifier, such that a prediction of arrhythmia by the ML
classifier does not provide a definitive diagnosis of the presence of arrhythmia.

A key aspect of this architecture is the integration of ML and BNs to support situ-
ation detection, situation analysis and decision-making. Some architectures that incor-
porate BNs for decision support have been proposed previously [12,30,31,41]. Similar
to these architectures, our architecture incorporates a BN in deliberation and decision
support. However, these architectures did not incorporate ML into the BN inference
process and did not provide an interactive decision making module.
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8 Limitations and Future Work

The PHA has some limitations. Firstly, the ML model was trained using a 12-lead
dataset. This dataset was selected due to its large size, expert annotation, inclusion
of demographic information, and that it incorporated various types of arrhythmia. To
our knowledge, there is no equivalent publicly available dataset for wearables. As part
of our ongoing work, we will evaluate our architecture on ECG datasets from wear-
able devices as these become available. Additionally, the feature extraction in this study
focused on the R-R interval and R-peak of the ECG signal. The use of additional fea-
tures, such ventricular rate, atrial rate and characteristics of the QRS complex may result
in better differentiation between AF and other arrhythmias. The need for manual feature
extraction can be eliminated by deep learning, which will be explored in future work.

In the current arrhythmia BN, we modelled only the key risk factors for arrhythmia.
The BN can be extended to incorporate other risk factors associated with arrhythmia.
While the BN was evaluated using Pitchforth and Mengersen’s framework based on
expert findings from the literature, we did not consult any experts to verify the BN.
We acknowledge that this should be done before it can be deployed for real world use.
Furthermore, the CPT values for the BN may differ, and should be customised for the
population where it will be used.

Acknowledgements. This work was financially supported by the Hasso Plattner Institute for
Digital Engineering through the HPI Research School at UCT.

Appendix

Bayes’ Rule

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
(1)

where Pr(A|B) is the posterior probability of A given B; Pr(B|A) is the posterior proba-
bility of B given A; and Pr(A) and Pr(B) are prior probabilities of A and B respectively.

Entropy and Mutual Information

ENT (X) = −
∑

P (x)logP (x) (2)

MI(X|Y ) = ENT (X) − ENT (X|Y ) (3)



404 T. Wanyana et al.

Hyperparameter Selection Table

Algorithm Hyperparameter Options Selected Options

Gradient Boosting n_estimators 300, 500, 800 800

criterion friedman_mse, squared_error, mse friedman_mse

loss log_loss, exponential log_loss

max_depth 1, 3, 10 3

Random Forest n_estimators 300, 500, 800 800

criterion gini, entropy, log_loss entropy

max_depth 50, 100, None None

max_features sqrt, log2, None sqrt

SVM C 0.5, 1, 1.5 1.5

kernel poly, rbf, sigmoid rbf

gamma scale, auto auto

decision_function_shape ovo, ovr ovo

MLP hidden_layer_sizes N/A (158, 100, 50)

activation identity, logistic, tanh, relu tanh

batch_size auto, 64, 100 auto

solver lbfgs, sgd, adam adam

learning_rate constant, invscaling, adaptive adaptive

max_iter 200, 500, 1000, 2000 500

MLMetrics: Accuracy, Precision, Recall, F1-Score

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1Score = 2 ∗ Precision ∗ Recall

Precision+Recall
(7)
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